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Abstract
Deep learning has recently brought great opportu-
nities to obtain meaningful information from vi-
sual and audio data. While some previous works
show good results on representing contextual in-
formation of audio and video, many have experi-
mented with quite limited classes – mostly musi-
cal instruments. In this paper, we propose a better
approach dealing with the lack of generalization
by applying much more comprehensive datasets
and also improve the performances using data
augmentation on visual input and spectrogram.
We replicate AVE-Net (audiovisual embedding
network) and AVOL-Net (sound localization net-
work), using L3-Net and multisensory network as
our baseline. We construct three different dataset
– AudioSet-Instruments, AudioSet-Animals, and
AVE-Dataset to confirm the scalability of network
on other domains. The results show that AVE-Net
and AVOL-Net can be applicable on any domain –
all that sound – while preserving the performance
on cross-modal retrieval and sound localization.

1. Introduction
If humans hear something, they can easily express it by
drawing or writing. Similarly, humans can also point out
an object that sound in the video. Then, is it possible to
do these tasks with artificial systems? Cross-modal learn-
ing suggests an answer; to learn relevant information from
multiple modalities.

Among variety of fields, one strategy broadly-used is cross-
modal retrieval. Cross-modal retrieval refers to the tasks
that retrieve related data from different modalities (Wen
et al., 2019).

Recently, with the rapid growth of online media (e.g.,
YouTube) (Surı́s et al., 2018), audio-visual retrieval has
been deeply discussed. Prior works, for example, use a
video dataset in a supervised manner (Aytar et al., 2017;
Gupta et al., 2016; Owens et al., 2016) or Teacher-Student
supervision (Ramaswamy & Das, 2020).

Yet, generating labeled datasets requires human labor a
lot. Because of this problem, some approaches work in
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Figure 1. Audio-image and image-audio retrieval. When an au-
dio or image is queried (visualized images with audio icon are just
for easier understanding, not used as queries), most relevant top-4
are retrieved.

a self-supervised manner. They first create true and false
samples utilizing the correspondence between video frames
and audios, then train the networks to learn the audio-visual
matching. (Owens & Efros, 2018b) proposes an idea that
uses multiple video frames and raw sound data as input via
3D-convolutions to determine each embedding of them with-
out any labeled data. Likewise, (Arandjelović & Zisserman,
2017) fuses the image and audio features by concatenating
to extract both of their information. Lastly, (Arandjelovic &
Zisserman, 2018) approaches this problem as (Arandjelović
& Zisserman, 2017) did but also modifies network architec-
tures to calculate Euclidean distance, so that the network
can be more aware of distance between embeddings.

Among these papers of self-supervised audiovisual learning,
we choose (Arandjelovic & Zisserman, 2018) as our target
to replicate, since it shows state-of-the-art performances
and exhibits availability of future extensions. However, this
work only considers limited classes of objects, especially
musical instruments, which cannot be generalized in wild,
real-world objects. Therefore, we aim to solve this skewness
by applying more various object classes while preserving
the performance. Our approach mainly contributes that we
show suggested networks are applicable on any domain of
objects.

2. Approach
We aim to generalize the task by extending the domain of
videos while maintaining the performance. To prove this,
we first replicate our target paper from scratch, including
main networks: AVE-Net and AVOL-Net. We first follow up
authors’ work with AudioSet-Instruments, the same dataset
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Figure 2. AVE-Net and AVOL-Net

mentioned in the paper. We then check if they are scalable
on another domain using AudioSet-Animals, our newly built
dataset. We finally examine the models’ ability to generalize
with AVE-Dataset. As models are easily overfitted, we figure
out to apply data augmentation on image and spectrogram
for improvement. We evaluate the results on three tasks:
audio-visual correspondence (AVC task), cross-modal re-
trieval, and sound localization. Detailed explanations are
introduced in the next section.

3. Data and Experiments
3.1. Models

We decide to replicate two models: AVE-Net and AVOL-
Net (Arandjelovic & Zisserman, 2018), utilizing L3-Net
(Arandjelovic & Zisserman, 2017) and the multisensory
network (Owens & Efros, 2018a) as our baseline. As the
structure of L3-Net is not so different from AVE-Net, we
also implement and train L3-Net to set up a fair baseline.
Details of each network are followed below.

3.1.1. TARGETING MODELS

Our target paper (Arandjelovic & Zisserman, 2018) in-
cludes two models: AVE-Net (Audio-Visual Embedding
Network) and AVOL-Net (Audio-Visual Object Localiza-
tion Network), each targeting for different tasks. The overall
pipeline of AVE-Net and AVOL-Net is shown in Figure 2.

AVE-Net aims to represent the image and audio into the

embedding vector, which is frequently-used approach of
audiovisual representation learning (Zhu et al., 2020). AVE-
Net employs AVC task for predicting whether given visual
and audio data matches. Euclidean distance of image and
audio embedding is passed to tiny fully connected layer,
which produce the correspondence prediction of two inputs.

AVOL-Net is similar to AVE-Net, except that it produces
similarity map for sound localization. Vision subnetwork
in AVOL-Net produces 128-channel 14×14 feature map,
rather than a single vector. A channel-wise product of visual
feature map and audio embedding is utilized as a similarity
map after activation.

3.1.2. BASELINE MODELS

The first baseline model called L3-Net is the previous ver-
sion of AVE-Net (Arandjelovic & Zisserman, 2017). Our
replication includes reproducing L3-Net as we should com-
pare the performance with AVE-Net under the same con-
dition. Like AVE-Net, L3-Net also focuses on extracting
both visual and audio features. While most of the building
blocks are identical, The significant difference comes from
the feature fusion strategy: concatenation of audio and vi-
sual embedding. Thus, L3-Net is less likely to be aware of
Euclidean distance-based alignment.

The second baseline is a multisensory network (Owens &
Efros, 2018a). Training multisensory network also utilizes
AVC task as a proxy task. However, the definition of false
correspondence is slightly different from that of AVE-Net
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Figure 3. Baseline models

described in Section 3.3. For example, the negative sample
is generated by pairing a given video frame with syntheti-
cally shifted audio. So the misalignment arises in the tempo-
ral feature, not in semantic details. Also, the multisensory
network requires multiple video frames as input. It tries
to concentrate on spatio-temporal features by applying 3D
convolution on visual data. Lastly, it treats audio data as 1D-
vector input, instead of being converted into a spectrogram.
The multisensory network is far from obtaining high-quality
audiovisual embedding, so there is no numerical measure-
ment of feature embedding quality. Thus, we use only its
accuracy on the AVC task to compare its performance with
other works.

3.2. Dataset

Our target paper (Arandjelovic & Zisserman, 2018) used
AudioSet (Gemmeke et al., 2017) as a base dataset. In
this paper, AudioSet was filtered into AudioSet-Instruments,
which has videos only containing events of human voices,
playing musical instruments, and using tools. We suggest
that AudioSet-Instruments is insufficient to generalize even
when AVE-Net and AVOL-Net successfully work on tar-
geting tasks since the categories are limited. To prove
that AVE-Net and AVOL-Net comprehensively work on
any sound events, we use additional categories: AudioSet-
Animals containing animal-related events and AVE-Dataset
with extensive audio-visual categories. We emphasize that
using these additional datasets is not a target to improve
the quantitative performance of given models. Rather, the
purpose of using extra data is to show that the models can
learn semantic concepts from any given audiovisual events.

AudioSet consists of more than 2 million videos that are

annotated with 632 classes and structured with hierarchical
ontology. (Arandjelovic & Zisserman, 2018) filters Au-
dioSet into AudioSet-Instruments to make the dataset more
manageable for their purposes, yielding 110 audio-visual
classes. Due to the constraints of resources, we choose 50
out of110 classes and use the subset of all videos containing
at least one of those classes. Thus, our reproduced AudioSet-
Instrument has 60k of videos divided into 48k, 6k, and 6k
for the train, validation, and test splits.

AudioSet-Animals is similar to AudioSet-Instrument as it
is the subset of AudioSet. One difference is that AudioSet-
Animals is the collection of videos, all annotated with ‘Ani-
mal’ tag. The number of videos in AudioSet-Animals is 35k
and we split them into 80%-10%-10% proportions for the
train, validation, and test set.

AVE-Dataset (Tian et al., 2018) is also the subset of Au-
dioSet, but not constrained to domain-specific categories.
AVE-Dataset consists of videos with 28 categories sufficient
to generalize the real-world audio-visual events. It contains
not only musical instruments, human voices, and animals
but also any objects/events such as vehicles and cooking.
Unlike AudioSet-Instruments and AudioSet-Animals, videos
in AVE-Dataset are not skewed and well-balanced. In other
words, the source of the sound event always exists in videos
from AVE-Dataset, and the distribution of videos along cat-
egories is relatively even. We use 3,085 video clips in AVE-
Dataset and split them into same proportion as AudioSet-
Animals.

We re-emphasize that AudioSet-Animals and AVE-Dataset
are not the supplementary data to boost the performance
compared to using only AudioSet-Instruments, but instead
used to insist that AVE-Net and AVOL-Net can learn the
features from any objects in the wild. We first examine their
scalability on animal category with AudioSet-Animals and
then measure the ability to generalize on any objects with
AVE-Dataset.

3.3. Data Processing

Datasets used in our experiments consist of 10-second video
clips from YouTube. As AVE-Net and AVOL-Net require a
single video frame with a 1-second spectrogram, we process
the video clips into images and spectrograms which can be
directly fed into the network.

We first slice a 10-second video clip to have 1-second in-
tervals. For each 1-second slice, we extract a video frame
at the mid-point with corresponding 1-second audio. Next,
we resample the sound at 48 kHz and convert it into a log-
spectrogram, using a 0.01-second window length with half-
window overlapping. Each pair consequently has the image
from the mid-point of sliced video with its corresponding
audio spectrogram. Not all videos have a 10-second du-
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Figure 4. How labels can be generated from video clips in self-
supervised manner? We obtain positive samples by pairing a
video frame and audio from the same timestamp. Negative samples
are made by pairing a image and audio from a different video.

ration. Hence we produce nine pairs for each video clip.
The shape of the input frame is resized to 224×224 with
an RGB channel, and the spectrogram has 257×199 shapes
having a single channel. Unlike the original work, we do not
treat the spectrogram as a gray-scale image but directly use
the log-scaled value. We use mean and standard deviation
from ImageNet to normalize input frames, and normalize
spectrograms to have unit variance before feeding them into
the network.

To train the networks in a self-supervised manner, we need
to label image-audio pairs by defining a pretext task. The
video itself can offer the binary classification pretext task,
which comes from the correspondence. Here, the corre-
spondence means whether the frame and the audio come
s from the same video. For example, the correspondence
between a dog image and dog-barking audio is likely to
be true, while a dog image with a cat-meowing sound may
have false correspondence. All image-audio pairs from the
previous processing step have true correspondence since
we retrieve the frame and the spectrogram from the same
interval.

We obtain positive image-audio pairs automatically from
video processing steps. In contrast, samples of negative cor-
respondence can be produced by pairing the frame and the
audio from a different video. In other words, with the video
frame from a particular video slice, we pick the spectrogram
from exactly different video and pair them as a negative
sample. As summarized in Figure 4, generating positive
and negative pairs does not require any human labor, which
makes self-supervised learning able to be applied to train-
ing the suggested models. The proportions of positive and
negative samples in training, validation, and test set are all
50%-50%. In the case of pairs whose frame and audio come
from the same video, but different times are not produced

as inputs; they are not the interest of the AVC task in our
project.

3.4. Implementation

For each epoch, only a single positive and negative pair are
made from each video in training time. A specific interval is
randomly chosen for each video to make a positive pair. A
negative pair is made by selecting a frame from an arbitrary
interval of a given video and pairing it to a random audio
interval from another video.

We first train the networks in vanilla form without any im-
provement strategy. We then try out two improvement strate-
gies: data augmentation and initializing the last tiny fully
connected layer (fc3 in Figure 2). Data augmentation is
applied to input frames – random cropping, horizontal flip-
ping, and jittering on brightness and saturation. Without
image augmentation, input frames are just resized to fit into
the input layer. When augmenting images, we first resize
the image into 256×256 and then randomly crop it into
224×224. In terms of weight initialization, AVE-Net is in-
evitably subject to weight change of the last fully connected
layer.

The network is trained with the same hyperparameters in
the paper, except for the learning rate and batch size. The
learning rate is not mentioned in the paper, so we find our
learning rate of 5 × 10−5. The authors use a batch size
of 2,048 by using 16 GPUs in parallel. However, because
of resource limitations, we use a batch size of 64. Opti-
mizer and regularization method is similar to the original;
Adam optimizer with weight decay by 10−5. The model,
which shows the minimum validation loss, is chosen for
performance evaluation.

Source codes of our project are available on the link below1.

4. Results
4.1. AVC Task

The AVC task is a common task given to all networks de-
scribed in Section 3.1. Although this task is utilized as a
proxy task to help network achieve significant goals, its
performance is still remarkable to check if the network suc-
ceeds to grab semantic information from the audio-visual
data.

As shown in Table 2, using AudioSet-Instruments, we obtain
accuracy of 72.8% on AVC task using AVE-Net without any
improvement strategy. After applying the standard augmen-
tation method on both image and spectrogram, the accuracy
of AVE-Net is boosted to 75.1%. As it is obvious that data
augmentation helps boost performance, we decide to apply

1https://bit.ly/2Z3SHMj

https://bit.ly/2Z3SHMj
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Table 1. Cross-modal and intra-modal retrieval performance of AVE-Net and L3-Net on AudioSet-Instruments and AVE-Dataset.
Top 2 rows show nDCG score of each network mentioned in the paper. Models on the bottom rows with bold text are the reproduced
version of networks we implement.

AudioSet-Instruments (nDCG@30) AVE-Dataset (nDCG@5)

Model img-aud aud-img img-img aud-aud img-aud aud-img img-img aud-aud

AVE-Net .561 .587 .604 .665 - - - -
L3-Net .418 .385 .567 .653 - - - -

AVE-Net .731 .728 .760 .780 .551 .539 .642 .677
AVE-Net + Aug. .743 .757 .772 .792 .572 .554 .683 .738
L3-Net + Aug. .627 .611 .755 .781 .413 .401 .687 .711

Table 2. Accuracy on AVC task of models trained on different
kinds of dataset. Top 4 rows show the accuracy of each network
mentioned in the paper. Models on the bottom rows with bold text
are the reproduced version of networks we implement.

Dataset

Model AudioSet AudioSet AVE
Instruments Animals Dataset

AVE-Net 81.9 - -
AVOL-Net 81.9 - -
L3-Net 80.8 - -

Multisensory 59.9 - -

AVE-Net 72.8 66.9 66.4
AVE-Net + Aug. 75.1 68.5 64.8

AVOL-Net + Aug. 73.4 67.1 67.9
L3-Net + Aug. 77.7 70.6 71.1

data augmentation on training AVOL-Net and L3-Net. In
the meanwhile, our version of networks cannot follow the
accuracy suggested in the paper. We note that we use only
20% of the training data due to the resource limitation. Also,
smaller batch size and unknown learning rates account for
this result, leading the networks to the sub-optimal point.

We try to show improvement by training networks on the
broader domain of objects. We first examine their extensibil-
ity with AudioSet-Animals and plunge into a much general
area using AVE-Dataset. The performance of networks on
other datasets is relatively low. However, the accuracy is
much better than just random guessing. Here, the critical
point is that models can obtain audio-visual information
from any object. Although the networks have shown lower
performance on other categories of objects, we note that the
AVC task is just proxy task to let the network know how to
make good embeddings. Moreover, L3-Net has unexpect-
edly shown the best accuracy. However, we again stress
that the AVC task is just an auxiliary task. The performance
of networks on real task – cross and intra-modal retrieval –
will be shown in the following section.

4.2. Cross-modal Retrieval

Retrieval task is a useful measurement to evaluate how well
representations are aligned. Cross-modal retrieval aims to
retrieve items that have different modalities with a query
(e.g., retrieving audio related to the queried image). Intra-
modal has the opposite goal (e.g., retrieving image related
to a given image). To quantify the quality of retrieved items,
we use the same metric in the paper – nDCG. As AudioSet
offers a hierarchical ontology tree, we can measure the tree
distance between the classes. We give higher relevance
scores on retrieved items with lower tree distance to queried
items. In the case of AVE-Net, we use 128-length L2 nor-
malized embeddings from each subnetwork to measure the
similarity between items. For L3-Net, we use features after
pool4 layer in Figure 3. Euclidean distance between em-
beddings from two different items is computed to measure
the similarity. The multisensory network is not included as
it is not purposed for embedding the audiovisual data.

As shown in Table 1, the evaluation starts by measuring
nDCG@30 on AudioSet-Instruments. It seems that our im-
plementation surpasses the result suggested in the paper.
Recall that we use the subset of classes and a small propor-
tion of dataset due to the resource constraint, it may not be
the fair comparison. However, aspects between the result of
the target paper and ours are very similar, which may im-
plicitly convey that we have trained successfully. AVE-Net
with data augmentation-applied – one of our improvement
methods – shows slightly better retrieval quality than the
plain version. A reproduced version of L3-Net shows rela-
tively low quality on cross-modal retrieval. Because L3-Net
simply concatenates the visual feature with an audio descrip-
tor, it is unaware of the Euclidean distance feature between
representations having different modality.

As our improvement, we check the scalability of AVE-Net
on a more comprehensive domain with AVE-Dataset. As the
number of test samples is only 308, including various kinds
of classes, we have found that evaluation on five retrieved
items is sufficient instead of 30. Comparing to authors’
result on AudioSet-Instruments, our result with AVE-Dataset
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(a) AudioSet-Instruments (b) AudioSet-Animals (c) AVE-dataset

Figure 5. Qualitative results of sound localization on different datasets.

shows reasonable retrieval quality. Although L3-Net works
comparably on intra-modal retrieval, AVE-Net easily beats
L3-Net in cross-modal retrieval tasks.

4.3. Sound Localization

To obtain the attention map that highlights objects that
sound, we visualize the similarity map of AVOL-Net de-
picted in Figure 2. We scale the similarity map of 14×14
resolution by 16 times so that the image can be completely
overlapped with the similarity map.

We focus on giving a qualitative result of sound localization
in Figure 5, as there is no standardized way to quantify the
localization quality. The author of replicating paper gives a
quantified result, using their test set by drawing a bounding
box, but not open in public. In the case of a multisensory
network, it also shows only qualitative results.

4.4. Embedding visualization with t-SNE

We visualize image and audio embeddings with t-SNE, a
useful tool to check whether embeddings are well-aligned.
We utilize AVE-Net trained on AudioSet-Instruments to ob-
tain audiovisual embeddings. As shown in Figure 6, embed-
dings with various kinds of classes are well-clustered, which
means model has successfully learned semantic concepts
from variety of sound and object.

5. Discussions
We propose an idea that can efficiently make use of any
objects that sound for cross-modal retrieval and sound local-
ization. Our approach tries to solve a question: Is suggested

Guitar
Piano
Bass drum
Orchestra
Cello

Figure 6. Visualizing embeddings with t-SNE. Dots with • repre-
sent image embeddings, and embeddings with × are from audios.

audiovisual models able to generalize their tasks on any ob-
jects? To answer this question, we first collect more various
datasets not only limited to musical instruments, but also
including humans, animals, and whatever existing around.
Then, we mainly train two neural networks: AVE-net and
AVOL-net for showing whether our model produces good
audio and visual embeddings. According to the results of
the evaluation with nDCG and sound localization, both of
our networks perform well even with more classes. We can
see that the performances are comparable to existing works,
in spite of using many more classes of sound and objects.

While our strategy gives a proof of generalization, there is a
room for improvement. One possible suggestion could be a
change in model architectures, and this is left for the future
work.
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